36 research outputs found

    The origin and evolution of syntax errors in simple sequence flow models in BPMN

    Get PDF
    How do syntax errors emerge? What is the earliest moment that potential syntax errors can be detected? Which evolution do syntax errors go through during modeling? A provisional answer to these questions is formulated in this paper based on an investigation of a dataset containing the operational details of 126 modeling sessions. First, a list is composed of the different potential syntax errors. Second, a classification framework is built to categorize the errors according to their certainty and severity during modeling (i.e., in partial or complete models). Third, the origin and evolution of all syntax errors in the dataset are identified. This data is then used to collect a number of observations, which form a basis for future research

    A Survey on Continuous Time Computations

    Full text link
    We provide an overview of theories of continuous time computation. These theories allow us to understand both the hardness of questions related to continuous time dynamical systems and the computational power of continuous time analog models. We survey the existing models, summarizing results, and point to relevant references in the literature

    Financial time series prediction using spiking neural networks

    Get PDF
    In this paper a novel application of a particular type of spiking neural network, a Polychronous Spiking Network, was used for financial time series prediction. It is argued that the inherent temporal capabilities of this type of network are suited to non-stationary data such as this. The performance of the spiking neural network was benchmarked against three systems: two "traditional", rate-encoded, neural networks; a Multi-Layer Perceptron neural network and a Dynamic Ridge Polynomial neural network, and a standard Linear Predictor Coefficients model. For this comparison three non-stationary and noisy time series were used: IBM stock data; US/Euro exchange rate data, and the price of Brent crude oil. The experiments demonstrated favourable prediction results for the Spiking Neural Network in terms of Annualised Return and prediction error for 5-Step ahead predictions. These results were also supported by other relevant metrics such as Maximum Drawdown and Signal-To-Noise ratio. This work demonstrated the applicability of the Polychronous Spiking Network to financial data forecasting and this in turn indicates the potential of using such networks over traditional systems in difficult to manage non-stationary environments. © 2014 Reid et al

    Computational modeling with spiking neural networks

    Get PDF
    This chapter reviews recent developments in the area of spiking neural networks (SNN) and summarizes the main contributions to this research field. We give background information about the functioning of biological neurons, discuss the most important mathematical neural models along with neural encoding techniques, learning algorithms, and applications of spiking neurons. As a specific application, the functioning of the evolving spiking neural network (eSNN) classification method is presented in detail and the principles of numerous eSNN based applications are highlighted and discussed

    A Rigorous Semantics for BPMN 2.0 Process Diagrams

    No full text

    Applying Heuristic Approaches for Predicting Defect-Prone Software Components

    No full text
    corecore